An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
نویسندگان
چکیده
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA space-time finite element method for the wave equation*
where n is a bounded open domain in R d with d ffi 1, 2 and T > 0. We have restricted our attention to a specific problem entirely to keep the presentation simple. Our results apply to considerably more general second-order hyperbolic problems. Typically an approximation to (1) is found by first discretizing in space to obtain the semidiscrete problem that consists of ordinary differential equa...
متن کاملAn Improved Alternating-Direction Method for a Viscous Wave Equation
We introduce an accurate and efficient alternating-direction method for solving a viscous wave equation which is based on a three-level, second-order correct implicit algorithm and which has a splitting error not significantly larger than the truncation error of the base method.
متن کاملAuxiliary equation method for the mKdV equation with variable coefficients
By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of nonlinear evolution equations with variable coefficients. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients. As a result, new explicit solutions including solitary wave solutions and trigonometric function solutions...
متن کاملFinite Element Heterogeneous Multiscale Method for the Wave Equation
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our new FE-HMM-L method not only captures the short-time behavior of the wave field, well described by classical homogenization theory, but also more subtle long-time dispersive effects, both at a computational cost independent of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Modeling in Engineering & Sciences
سال: 2020
ISSN: 1526-1506
DOI: 10.32604/cmes.2020.08563